# Properties

 Label 2.0.11.1-4900.2-a Base field $$\Q(\sqrt{-11})$$ Weight $2$ Level norm $4900$ Level $$\left(70\right)$$ Dimension $1$ CM no Base change yes Sign $-1$ Analytic rank odd

# Related objects

## Base field: $$\Q(\sqrt{-11})$$

Generator $$a$$, with minimal polynomial $$x^2 - x + 3$$; class number $$1$$.

## Form

 Weight: 2 Level: 4900.2 = $$\left(70\right)$$ Level norm: 4900 Dimension: 1 CM: no Base change: yes 8470.2.a.j , 70.2.a.a Newspace: 2.0.11.1-4900.2 (dimension 3) Sign of functional equation: $-1$ Analytic rank: odd

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$$4$$ 4.1 = $$\left(2\right)$$ $$-1$$
$$5$$ 5.1 = $$\left(-a - 1\right)$$ $$1$$
$$5$$ 5.2 = $$\left(a - 2\right)$$ $$1$$
$$49$$ 49.1 = $$\left(7\right)$$ $$-1$$

## Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
$$3$$ 3.1 = $$\left(-a\right)$$ $$0$$
$$3$$ 3.2 = $$\left(a - 1\right)$$ $$0$$
$$11$$ 11.1 = $$\left(-2 a + 1\right)$$ $$4$$
$$23$$ 23.1 = $$\left(a + 4\right)$$ $$0$$
$$23$$ 23.2 = $$\left(a - 5\right)$$ $$0$$
$$31$$ 31.1 = $$\left(-3 a + 4\right)$$ $$8$$
$$31$$ 31.2 = $$\left(3 a + 1\right)$$ $$8$$
$$37$$ 37.1 = $$\left(-3 a - 2\right)$$ $$-10$$
$$37$$ 37.2 = $$\left(3 a - 5\right)$$ $$-10$$
$$47$$ 47.1 = $$\left(-2 a + 7\right)$$ $$8$$
$$47$$ 47.2 = $$\left(2 a + 5\right)$$ $$8$$
$$53$$ 53.1 = $$\left(-4 a + 5\right)$$ $$-2$$
$$53$$ 53.2 = $$\left(4 a + 1\right)$$ $$-2$$
$$59$$ 59.1 = $$\left(a + 7\right)$$ $$-8$$
$$59$$ 59.2 = $$\left(a - 8\right)$$ $$-8$$
$$67$$ 67.1 = $$\left(-3 a - 5\right)$$ $$-12$$
$$67$$ 67.2 = $$\left(3 a - 8\right)$$ $$-12$$
$$71$$ 71.1 = $$\left(-5 a + 1\right)$$ $$-16$$
$$71$$ 71.2 = $$\left(5 a - 4\right)$$ $$-16$$
$$89$$ 89.1 = $$\left(5 a + 2\right)$$ $$10$$
 Display number of eigenvalues