# Properties

 Label 2.0.11.1-27225.8-c Base field $$\Q(\sqrt{-11})$$ Weight $2$ Level norm $27225$ Level $$\left(-55 a - 110\right)$$ Dimension $1$ CM no Base change no Sign $+1$ Analytic rank $$0$$

# Learn more

## Base field: $$\Q(\sqrt{-11})$$

Generator $$a$$, with minimal polynomial $$x^2 - x + 3$$; class number $$1$$.

## Form

 Weight: 2 Level: 27225.8 = $$\left(-55 a - 110\right)$$ Level norm: 27225 Dimension: 1 CM: no Base change: no Newspace: 2.0.11.1-27225.8 (dimension 27) Sign of functional equation: $+1$ Analytic rank: $$0$$ L-ratio: 8

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$$3$$ 3.2 = ($$a - 1$$) $$-1$$
$$5$$ 5.1 = ($$-a - 1$$) $$-1$$
$$5$$ 5.2 = ($$a - 2$$) $$-1$$
$$11$$ 11.1 = ($$-2 a + 1$$) $$1$$

## Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
$$3$$ 3.1 = ($$-a$$) $$0$$
$$4$$ 4.1 = ($$2$$) $$3$$
$$23$$ 23.1 = ($$a + 4$$) $$4$$
$$23$$ 23.2 = ($$a - 5$$) $$6$$
$$31$$ 31.1 = ($$-3 a + 4$$) $$6$$
$$31$$ 31.2 = ($$3 a + 1$$) $$8$$
$$37$$ 37.1 = ($$-3 a - 2$$) $$2$$
$$37$$ 37.2 = ($$3 a - 5$$) $$8$$
$$47$$ 47.1 = ($$-2 a + 7$$) $$0$$
$$47$$ 47.2 = ($$2 a + 5$$) $$-2$$
$$49$$ 49.1 = ($$7$$) $$4$$
$$53$$ 53.1 = ($$-4 a + 5$$) $$-6$$
$$53$$ 53.2 = ($$4 a + 1$$) $$12$$
$$59$$ 59.1 = ($$a + 7$$) $$-4$$
$$59$$ 59.2 = ($$a - 8$$) $$10$$
$$67$$ 67.1 = ($$-3 a - 5$$) $$14$$
$$67$$ 67.2 = ($$3 a - 8$$) $$-10$$
$$71$$ 71.1 = ($$-5 a + 1$$) $$-8$$
$$71$$ 71.2 = ($$5 a - 4$$) $$12$$
$$89$$ 89.1 = ($$5 a + 2$$) $$0$$
 Display number of eigenvalues