Properties

Label 2.0.11.1-16384.1-c
Base field \(\Q(\sqrt{-11}) \)
Weight $2$
Level norm $16384$
Level \( \left(128\right) \)
Dimension $1$
CM no
Base change yes
Sign $+1$
Analytic rank \(0\)

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \(x^2 - x + 3\); class number \(1\).

Form

Weight: 2
Level: 16384.1 = \( \left(128\right) \)
Level norm: 16384
Dimension: 1
CM: no
Base change: yes 128.2.a.c , 15488.2.a.u
Newspace:2.0.11.1-16384.1 (dimension 48)
Sign of functional equation: $+1$
Analytic rank: \(0\)
L-ratio: 1

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 4 \) 4.1 = \( \left(2\right) \) \( -1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 3 \) 3.1 = \( \left(-a\right) \) \( 2 \)
\( 3 \) 3.2 = \( \left(a - 1\right) \) \( 2 \)
\( 5 \) 5.1 = \( \left(-a - 1\right) \) \( -2 \)
\( 5 \) 5.2 = \( \left(a - 2\right) \) \( -2 \)
\( 11 \) 11.1 = \( \left(-2 a + 1\right) \) \( -2 \)
\( 23 \) 23.1 = \( \left(a + 4\right) \) \( -4 \)
\( 23 \) 23.2 = \( \left(a - 5\right) \) \( -4 \)
\( 31 \) 31.1 = \( \left(-3 a + 4\right) \) \( 0 \)
\( 31 \) 31.2 = \( \left(3 a + 1\right) \) \( 0 \)
\( 37 \) 37.1 = \( \left(-3 a - 2\right) \) \( -10 \)
\( 37 \) 37.2 = \( \left(3 a - 5\right) \) \( -10 \)
\( 47 \) 47.1 = \( \left(-2 a + 7\right) \) \( 8 \)
\( 47 \) 47.2 = \( \left(2 a + 5\right) \) \( 8 \)
\( 49 \) 49.1 = \( \left(7\right) \) \( 2 \)
\( 53 \) 53.1 = \( \left(-4 a + 5\right) \) \( 6 \)
\( 53 \) 53.2 = \( \left(4 a + 1\right) \) \( 6 \)
\( 59 \) 59.1 = \( \left(a + 7\right) \) \( 14 \)
\( 59 \) 59.2 = \( \left(a - 8\right) \) \( 14 \)
\( 67 \) 67.1 = \( \left(-3 a - 5\right) \) \( 10 \)
\( 67 \) 67.2 = \( \left(3 a - 8\right) \) \( 10 \)
Display number of eigenvalues