Results (displaying all 50 matches)
| Label | Polynomial | $p$ | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7.7.0.1 | x7 - x + 2 | 7 | 1 | 7 | 0 | $C_7$ (as 7T1) | $ [\ ]^{7}$ |
| 7.7.7.1 | x7 + 42x + 7 | 7 | 7 | 1 | 7 | $F_7$ (as 7T4) | $ [7/6]_{6}$ |
| 7.7.7.2 | x7 + 21x + 7 | 7 | 7 | 1 | 7 | $F_7$ (as 7T4) | $ [7/6]_{6}$ |
| 7.7.7.3 | x7 + 35x + 7 | 7 | 7 | 1 | 7 | $F_7$ (as 7T4) | $ [7/6]_{6}$ |
| 7.7.7.4 | x7 + 14x + 7 | 7 | 7 | 1 | 7 | $F_7$ (as 7T4) | $ [7/6]_{6}$ |
| 7.7.7.5 | x7 + 7x + 7 | 7 | 7 | 1 | 7 | $F_7$ (as 7T4) | $ [7/6]_{6}$ |
| 7.7.7.6 | x7 + 28x + 7 | 7 | 7 | 1 | 7 | $F_7$ (as 7T4) | $ [7/6]_{6}$ |
| 7.7.8.1 | x7 + 14x2 + 7 | 7 | 7 | 1 | 8 | $C_7:C_3$ (as 7T3) | $ [4/3]_{3}$ |
| 7.7.8.2 | x7 + 7x2 + 7 | 7 | 7 | 1 | 8 | $C_7:C_3$ (as 7T3) | $ [4/3]_{3}$ |
| 7.7.8.3 | x7 + 28x2 + 7 | 7 | 7 | 1 | 8 | $C_7:C_3$ (as 7T3) | $ [4/3]_{3}$ |
| 7.7.8.4 | x7 + 21x2 + 7 | 7 | 7 | 1 | 8 | $F_7$ (as 7T4) | $ [4/3]_{3}^{2}$ |
| 7.7.8.5 | x7 + 42x2 + 7 | 7 | 7 | 1 | 8 | $F_7$ (as 7T4) | $ [4/3]_{3}^{2}$ |
| 7.7.8.6 | x7 + 35x2 + 7 | 7 | 7 | 1 | 8 | $F_7$ (as 7T4) | $ [4/3]_{3}^{2}$ |
| 7.7.9.1 | x7 + 14x3 + 7 | 7 | 7 | 1 | 9 | $D_{7}$ (as 7T2) | $ [3/2]_{2}$ |
| 7.7.9.2 | x7 + 7x3 + 7 | 7 | 7 | 1 | 9 | $F_7$ (as 7T4) | $ [3/2]_{2}^{3}$ |
| 7.7.9.3 | x7 + 28x3 + 7 | 7 | 7 | 1 | 9 | $F_7$ (as 7T4) | $ [3/2]_{2}^{3}$ |
| 7.7.9.4 | x7 + 35x3 + 7 | 7 | 7 | 1 | 9 | $D_{7}$ (as 7T2) | $ [3/2]_{2}$ |
| 7.7.9.5 | x7 + 42x3 + 7 | 7 | 7 | 1 | 9 | $F_7$ (as 7T4) | $ [3/2]_{2}^{3}$ |
| 7.7.9.6 | x7 + 21x3 + 7 | 7 | 7 | 1 | 9 | $F_7$ (as 7T4) | $ [3/2]_{2}^{3}$ |
| 7.7.10.1 | x7 + 28x4 + 7 | 7 | 7 | 1 | 10 | $C_7:C_3$ (as 7T3) | $ [5/3]_{3}$ |
| 7.7.10.2 | x7 + 7x4 + 7 | 7 | 7 | 1 | 10 | $C_7:C_3$ (as 7T3) | $ [5/3]_{3}$ |
| 7.7.10.3 | x7 + 14x4 + 7 | 7 | 7 | 1 | 10 | $C_7:C_3$ (as 7T3) | $ [5/3]_{3}$ |
| 7.7.10.4 | x7 + 21x4 + 7 | 7 | 7 | 1 | 10 | $F_7$ (as 7T4) | $ [5/3]_{3}^{2}$ |
| 7.7.10.5 | x7 + 35x4 + 7 | 7 | 7 | 1 | 10 | $F_7$ (as 7T4) | $ [5/3]_{3}^{2}$ |
| 7.7.10.6 | x7 + 42x4 + 7 | 7 | 7 | 1 | 10 | $F_7$ (as 7T4) | $ [5/3]_{3}^{2}$ |
| 7.7.11.1 | x7 + 7x5 + 7 | 7 | 7 | 1 | 11 | $F_7$ (as 7T4) | $ [11/6]_{6}$ |
| 7.7.11.2 | x7 + 28x5 + 7 | 7 | 7 | 1 | 11 | $F_7$ (as 7T4) | $ [11/6]_{6}$ |
| 7.7.11.3 | x7 + 14x5 + 7 | 7 | 7 | 1 | 11 | $F_7$ (as 7T4) | $ [11/6]_{6}$ |
| 7.7.11.4 | x7 + 21x5 + 7 | 7 | 7 | 1 | 11 | $F_7$ (as 7T4) | $ [11/6]_{6}$ |
| 7.7.11.5 | x7 + 35x5 + 7 | 7 | 7 | 1 | 11 | $F_7$ (as 7T4) | $ [11/6]_{6}$ |
| 7.7.11.6 | x7 + 42x5 + 7 | 7 | 7 | 1 | 11 | $F_7$ (as 7T4) | $ [11/6]_{6}$ |
| 7.7.12.1 | x7 - 7x6 + 7 | 7 | 7 | 1 | 12 | $C_7$ (as 7T1) | $ [2]$ |
| 7.7.12.10 | x7 + 7x6 + 7 | 7 | 7 | 1 | 12 | $D_{7}$ (as 7T2) | $ [2]^{2}$ |
| 7.7.12.11 | x7 + 14x6 + 7 | 7 | 7 | 1 | 12 | $F_7$ (as 7T4) | $ [2]^{6}$ |
| 7.7.12.12 | x7 + 28x6 + 7 | 7 | 7 | 1 | 12 | $F_7$ (as 7T4) | $ [2]^{6}$ |
| 7.7.12.2 | x7 - 7x6 + 56 | 7 | 7 | 1 | 12 | $C_7$ (as 7T1) | $ [2]$ |
| 7.7.12.3 | x7 - 7x6 + 105 | 7 | 7 | 1 | 12 | $C_7$ (as 7T1) | $ [2]$ |
| 7.7.12.4 | x7 - 7x6 + 154 | 7 | 7 | 1 | 12 | $C_7$ (as 7T1) | $ [2]$ |
| 7.7.12.5 | x7 - 7x6 + 203 | 7 | 7 | 1 | 12 | $C_7$ (as 7T1) | $ [2]$ |
| 7.7.12.6 | x7 - 7x6 + 252 | 7 | 7 | 1 | 12 | $C_7$ (as 7T1) | $ [2]$ |
| 7.7.12.7 | x7 - 7x6 + 301 | 7 | 7 | 1 | 12 | $C_7$ (as 7T1) | $ [2]$ |
| 7.7.12.8 | x7 + 21x6 + 7 | 7 | 7 | 1 | 12 | $C_7:C_3$ (as 7T3) | $ [2]^{3}$ |
| 7.7.12.9 | x7 + 35x6 + 7 | 7 | 7 | 1 | 12 | $C_7:C_3$ (as 7T3) | $ [2]^{3}$ |
| 7.7.13.1 | x7 + 7 | 7 | 7 | 1 | 13 | $F_7$ (as 7T4) | $ [13/6]_{6}$ |
| 7.7.13.2 | x7 + 105 | 7 | 7 | 1 | 13 | $F_7$ (as 7T4) | $ [13/6]_{6}$ |
| 7.7.13.3 | x7 + 301 | 7 | 7 | 1 | 13 | $F_7$ (as 7T4) | $ [13/6]_{6}$ |
| 7.7.13.4 | x7 + 154 | 7 | 7 | 1 | 13 | $F_7$ (as 7T4) | $ [13/6]_{6}$ |
| 7.7.13.5 | x7 + 56 | 7 | 7 | 1 | 13 | $F_7$ (as 7T4) | $ [13/6]_{6}$ |
| 7.7.13.6 | x7 + 203 | 7 | 7 | 1 | 13 | $F_7$ (as 7T4) | $ [13/6]_{6}$ |
| 7.7.13.7 | x7 + 252 | 7 | 7 | 1 | 13 | $F_7$ (as 7T4) | $ [13/6]_{6}$ |