Results (displaying matches 1-50 of at least 1000) Next
| Label | Polynomial | $p$ | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2.12.0.1 | x12 - 26x10 + 275x8 - 1500x6 + 4375x4 - 6250x2 + 7221 | 2 | 1 | 12 | 0 | $C_{12}$ (as 12T1) | $ [\ ]^{12}$ |
| 2.12.8.1 | x12 - 6x9 + 12x6 - 8x3 + 16 | 2 | 3 | 4 | 8 | $C_3 : C_4$ (as 12T5) | $ [\ ]_{3}^{4}$ |
| 2.12.8.2 | x12 - 8x3 + 16 | 2 | 3 | 4 | 8 | $C_3\times (C_3 : C_4)$ (as 12T19) | $ [\ ]_{3}^{12}$ |
| 2.12.12.1 | x12 - 48x10 + 49x8 + 8x6 + 19x4 - 24x2 + 59 | 2 | 2 | 6 | 12 | $C_2^5.(C_2\times C_6)$ (as 12T134) | $ [2, 2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.10 | x12 - 6x10 + 23x8 - 28x6 - 9x4 - 30x2 - 15 | 2 | 2 | 6 | 12 | $C_2^2\wr C_2:C_3$ (as 12T58) | $ [2, 2, 2, 2]^{6}$ |
| 2.12.12.11 | x12 - 6x10 - 73x8 + 140x6 + 79x4 - 6x2 + 57 | 2 | 2 | 6 | 12 | $A_4 \times C_2$ (as 12T7) | $ [2, 2]^{6}$ |
| 2.12.12.12 | x12 + 66x10 - 93x8 - 68x6 - 41x4 + 66x2 - 123 | 2 | 2 | 6 | 12 | $C_4\times A_4$ (as 12T29) | $ [2, 2, 2]^{6}$ |
| 2.12.12.13 | x12 - 18x10 - 13x8 - 44x6 + 55x4 + 62x2 + 21 | 2 | 2 | 6 | 12 | $C_2^5.C_6$ (as 12T105) | $ [2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.14 | x12 + 4x10 + 21x8 - 16x6 + 43x4 + 12x2 - 1 | 2 | 2 | 6 | 12 | $C_2^5.(C_2\times C_6)$ (as 12T134) | $ [2, 2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.15 | x12 - 28x10 - 63x8 - 32x6 + 19x4 + 60x2 - 21 | 2 | 2 | 6 | 12 | $C_2^5.(C_2\times C_6)$ (as 12T134) | $ [2, 2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.16 | x12 - 16x10 - 23x8 + 24x6 - 29x4 - 8x2 - 13 | 2 | 2 | 6 | 12 | $C_2^5.(C_2\times C_6)$ (as 12T134) | $ [2, 2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.17 | x12 + 22x10 + 75x8 - 12x6 - 89x4 + 54x2 - 115 | 2 | 2 | 6 | 12 | $C_4\times A_4$ (as 12T29) | $ [2, 2]^{12}$ |
| 2.12.12.18 | x12 + 80x10 + 81x8 - 160x6 - 117x4 + 80x2 + 227 | 2 | 2 | 6 | 12 | $D_4 \times C_3$ (as 12T14) | $ [2, 2]^{6}$ |
| 2.12.12.19 | x12 - 6x10 + 27x8 - 4x6 + 7x4 + 10x2 + 29 | 2 | 2 | 6 | 12 | $C_2^5.C_6$ (as 12T105) | $ [2, 2, 2, 2]^{12}$ |
| 2.12.12.2 | x12 - 6x10 - 13x8 - 28x6 + 15x4 - 30x2 - 3 | 2 | 2 | 6 | 12 | $C_2^5.C_6$ (as 12T105) | $ [2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.20 | x12 - 18x10 - 49x8 - 52x6 + 39x4 + 6x2 + 9 | 2 | 2 | 6 | 12 | $C_2\times C_2^2\wr C_2:C_3$ (as 12T87) | $ [2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.21 | x12 + 44x10 + 45x8 - 48x6 + 59x4 - 60x2 + 23 | 2 | 2 | 6 | 12 | $C_2^5.(C_2\times C_6)$ (as 12T134) | $ [2, 2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.22 | x12 - 52x10 - 7x8 + 32x6 + 35x4 - 44x2 - 29 | 2 | 2 | 6 | 12 | $C_2^5.(C_2\times C_6)$ (as 12T134) | $ [2, 2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.23 | x12 - 2x10 - 65x8 + 100x6 - 97x4 - 98x2 + 97 | 2 | 2 | 6 | 12 | $C_2^2 \times A_4$ (as 12T25) | $ [2, 2, 2]^{6}$ |
| 2.12.12.24 | x12 - 100x10 - 59x8 + 104x6 + 387x4 + 444x2 + 439 | 2 | 2 | 6 | 12 | $D_4 \times C_3$ (as 12T14) | $ [2, 2]^{6}$ |
| 2.12.12.25 | x12 - 78x10 - 1621x8 + 460x6 - 1977x4 + 866x2 + 749 | 2 | 2 | 6 | 12 | $C_{12}$ (as 12T1) | $ [2]^{6}$ |
| 2.12.12.26 | x12 - 162x10 + 26423x8 + 125508x6 - 64481x4 - 122498x2 - 86071 | 2 | 2 | 6 | 12 | $C_6\times C_2$ (as 12T2) | $ [2]^{6}$ |
| 2.12.12.27 | x12 - 18x10 + 171x8 + 116x6 - 313x4 + 190x2 + 877 | 2 | 6 | 2 | 12 | $A_4:C_4$ (as 12T30) | $ [4/3, 4/3]_{3}^{4}$ |
| 2.12.12.28 | x12 - x10 + 2x8 - x6 - 2x4 + 3x2 + 1 | 2 | 6 | 2 | 12 | $S_4$ (as 12T9) | $ [4/3, 4/3]_{3}^{2}$ |
| 2.12.12.29 | x12 + 6x10 + 51x8 - 252x6 - 393x4 - 234x2 - 203 | 2 | 6 | 2 | 12 | 12T159 | $ [4/3, 4/3, 4/3, 4/3]_{3}^{12}$ |
| 2.12.12.3 | x12 - 16x10 - 51x8 - 8x6 + 43x4 + 24x2 - 57 | 2 | 2 | 6 | 12 | $C_2^5.(C_2\times C_6)$ (as 12T134) | $ [2, 2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.30 | x12 - 6x10 + 15x8 - 52x6 + 111x4 - 102x2 - 991 | 2 | 6 | 2 | 12 | $A_4\wr C_2$ (as 12T126) | $ [4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
| 2.12.12.31 | x12 + 4x11 - 6x10 + 8x9 - 4x8 + 8x7 - 4x6 + 4x5 - 4x4 + 8x + 8 | 2 | 4 | 3 | 12 | 12T205 | $ [4/3, 4/3, 4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
| 2.12.12.32 | x12 + 6x11 - 4x10 - 2x9 + 4x8 - 8x7 - 8x6 - 8x5 - 4x4 - 8 | 2 | 4 | 3 | 12 | $A_4\wr C_2$ (as 12T129) | $ [4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
| 2.12.12.33 | x12 + 6x11 - 4x9 - 2x8 + 8x7 + 8x6 - 4x5 + 8x3 + 8x2 + 8 | 2 | 4 | 3 | 12 | $C_3\times S_4$ (as 12T45) | $ [4/3, 4/3]_{3}^{6}$ |
| 2.12.12.34 | x12 + 2x11 + 2x9 + 2x7 + 2x5 + 2x3 + 2x + 2 | 2 | 12 | 1 | 12 | 12T254 | $ [10/9, 10/9, 10/9, 10/9, 10/9, 10/9]_{9}^{6}$ |
| 2.12.12.4 | x12 - 6x10 + 15x8 - 20x6 + 15x4 - 38x2 - 31 | 2 | 2 | 6 | 12 | $C_2\times C_2^2\wr C_2:C_3$ (as 12T87) | $ [2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.5 | x12 + 52x10 - 11x8 - 8x6 - 45x4 - 44x2 - 9 | 2 | 2 | 6 | 12 | $D_4\times A_4$ (as 12T51) | $ [2, 2, 2, 2]^{6}$ |
| 2.12.12.6 | x12 - 18x10 + 11x8 - 52x6 - x4 + 6x2 - 11 | 2 | 2 | 6 | 12 | $C_2^5.C_6$ (as 12T105) | $ [2, 2, 2, 2]^{12}$ |
| 2.12.12.7 | x12 - 48x10 + 53x8 + 40x6 + 27x4 - 56x2 + 47 | 2 | 2 | 6 | 12 | $C_2^5.(C_2\times C_6)$ (as 12T134) | $ [2, 2, 2, 2, 2, 2]^{6}$ |
| 2.12.12.8 | x12 + 8x10 - 31x8 + 64x6 - 53x4 - 8x2 - 45 | 2 | 2 | 6 | 12 | $D_4\times A_4$ (as 12T51) | $ [2, 2, 2, 2]^{6}$ |
| 2.12.12.9 | x12 - 18x10 + 7x8 - 28x6 - x4 - 18x2 - 7 | 2 | 2 | 6 | 12 | $C_2^2\wr C_2:C_3$ (as 12T58) | $ [2, 2, 2, 2]^{6}$ |
| 2.12.14.1 | x12 + 2x3 + 2 | 2 | 12 | 1 | 14 | $S_4$ (as 12T8) | $ [4/3, 4/3]_{3}^{2}$ |
| 2.12.14.2 | x12 + 2x4 + 2x3 + 2 | 2 | 12 | 1 | 14 | $A_4:C_4$ (as 12T27) | $ [4/3, 4/3]_{3}^{4}$ |
| 2.12.14.3 | x12 + 2x3 + 2x2 + 2 | 2 | 12 | 1 | 14 | $A_4\wr C_2$ (as 12T128) | $ [4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
| 2.12.16.1 | x12 + 48x10 + 17x8 - 128x6 + 171x4 - 176x2 + 3 | 2 | 6 | 2 | 16 | 12T208 | $ [4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$ |
| 2.12.16.10 | x12 + 54x10 - 257x8 - 492x6 - 945x4 + 342x2 + 81 | 2 | 6 | 2 | 16 | 12T158 | $ [4/3, 4/3, 4/3, 4/3, 2]_{3}^{6}$ |
| 2.12.16.11 | x12 + 20x10 - 44x8 - 4x6 - 16x4 - 48 | 2 | 6 | 2 | 16 | $C_3\times (C_3 : C_4)$ (as 12T19) | $ [2]_{3}^{6}$ |
| 2.12.16.12 | x12 + 18x10 + 171x8 - 404x6 - 281x4 - 286x2 + 461 | 2 | 6 | 2 | 16 | 12T159 | $ [4/3, 4/3, 4/3, 4/3, 2]_{3}^{6}$ |
| 2.12.16.13 | x12 + 12x10 + 12x8 + 8x6 + 32x4 - 16x2 + 16 | 2 | 6 | 2 | 16 | $D_6$ (as 12T3) | $ [2]_{3}^{2}$ |
| 2.12.16.14 | x12 + 36x10 + 37x8 + 88x6 - 61x4 + 68x2 - 105 | 2 | 6 | 2 | 16 | 12T208 | $ [4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$ |
| 2.12.16.15 | x12 - 71x8 + 123x4 - 245 | 2 | 6 | 2 | 16 | $\GL(2,Z/4)$ (as 12T50) | $ [4/3, 4/3, 2, 2]_{3}^{2}$ |
| 2.12.16.16 | x12 - 54x10 - 509x8 - 964x6 - 777x4 - 934x2 + 357 | 2 | 6 | 2 | 16 | $A_4:C_4$ (as 12T30) | $ [4/3, 4/3, 2]_{3}^{2}$ |
| 2.12.16.17 | x12 + 9x8 - 224x6 + 187x4 - 32x2 - 133 | 2 | 6 | 2 | 16 | 12T208 | $ [4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$ |
| 2.12.16.18 | x12 + x10 + 6x8 - 3x6 + 6x4 + x2 - 3 | 2 | 6 | 2 | 16 | $C_3 : C_4$ (as 12T5) | $ [2]_{3}^{2}$ |
In order to download results, determine the number of results.