19.12.0.1 |
x12 - x + 15 |
$19$ |
$1$ |
$12$ |
$0$ |
$C_{12}$ (as 12T1) |
$ [\ ]^{12}$ |
19.12.6.1 |
x12 + 41154x6 - 2476099x2 + 423412929 |
$19$ |
$2$ |
$6$ |
$6$ |
$C_6\times C_2$ (as 12T2) |
$ [\ ]_{2}^{6}$ |
19.12.6.2 |
x12 - 2476099x2 + 141137643 |
$19$ |
$2$ |
$6$ |
$6$ |
$C_{12}$ (as 12T1) |
$ [\ ]_{2}^{6}$ |
19.12.8.1 |
x12 - 114x9 + 4332x6 - 54872x3 + 130321000 |
$19$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$ [\ ]_{3}^{4}$ |
19.12.8.2 |
x12 - 13718x3 + 1303210 |
$19$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$ [\ ]_{3}^{4}$ |
19.12.8.3 |
x12 + 7220x6 - 27436x3 + 13032100 |
$19$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$ [\ ]_{3}^{4}$ |
19.12.9.1 |
x12 - 361x4 + 27436 |
$19$ |
$4$ |
$3$ |
$9$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{4}^{6}$ |
19.12.9.2 |
x12 - 38x8 + 361x4 - 109744 |
$19$ |
$4$ |
$3$ |
$9$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{4}^{6}$ |
19.12.10.1 |
x12 - 171x6 + 23104 |
$19$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$ [\ ]_{6}^{2}$ |
19.12.10.2 |
x12 + 57x6 + 1444 |
$19$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$ [\ ]_{6}^{2}$ |
19.12.10.3 |
x12 - 19x6 + 5776 |
$19$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$ [\ ]_{6}^{2}$ |
19.12.10.4 |
x12 - 19x6 + 722 |
$19$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$ [\ ]_{6}^{2}$ |
19.12.10.5 |
x12 + 95x6 + 2888 |
$19$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$ [\ ]_{6}^{2}$ |
19.12.10.6 |
x12 - 209x6 + 11552 |
$19$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$ [\ ]_{6}^{2}$ |
19.12.11.1 |
x12 + 76 |
$19$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{12}^{2}$ |
19.12.11.2 |
x12 + 1216 |
$19$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{12}^{2}$ |
19.12.11.3 |
x12 + 19456 |
$19$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{12}^{2}$ |
19.12.11.4 |
x12 - 19 |
$19$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{12}^{2}$ |
19.12.11.5 |
x12 - 304 |
$19$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{12}^{2}$ |
19.12.11.6 |
x12 - 4864 |
$19$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{12}^{2}$ |