Results (displaying matches 1-50 of 170)
Next
| Label |
Polynomial |
$p$ |
$e$ |
$f$ |
$c$ |
Galois group |
Slope content |
| 13.13.0.1 |
x13 - x + 2 |
13 |
1 |
13 |
0 |
$C_{13}$ (as 13T1) |
$ [\ ]^{13}$ |
| 13.13.13.1 |
x13 + 13x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.10 |
x13 + 91x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.11 |
x13 + 104x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.12 |
x13 + 143x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.2 |
x13 + 39x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.3 |
x13 + 52x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.4 |
x13 + 117x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.5 |
x13 + 130x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.6 |
x13 + 156x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.7 |
x13 + 26x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.8 |
x13 + 65x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.13.9 |
x13 + 78x + 13 |
13 |
13 |
1 |
13 |
$F_{13}$ (as 13T6) |
$ [13/12]_{12}$ |
| 13.13.14.1 |
x13 + 26x2 + 13 |
13 |
13 |
1 |
14 |
$C_{13}:C_6$ (as 13T5) |
$ [7/6]_{6}$ |
| 13.13.14.10 |
x13 + 117x2 + 13 |
13 |
13 |
1 |
14 |
$F_{13}$ (as 13T6) |
$ [7/6]_{6}^{2}$ |
| 13.13.14.11 |
x13 + 130x2 + 13 |
13 |
13 |
1 |
14 |
$F_{13}$ (as 13T6) |
$ [7/6]_{6}^{2}$ |
| 13.13.14.12 |
x13 + 156x2 + 13 |
13 |
13 |
1 |
14 |
$F_{13}$ (as 13T6) |
$ [7/6]_{6}^{2}$ |
| 13.13.14.2 |
x13 + 65x2 + 13 |
13 |
13 |
1 |
14 |
$C_{13}:C_6$ (as 13T5) |
$ [7/6]_{6}$ |
| 13.13.14.3 |
x13 + 78x2 + 13 |
13 |
13 |
1 |
14 |
$C_{13}:C_6$ (as 13T5) |
$ [7/6]_{6}$ |
| 13.13.14.4 |
x13 + 91x2 + 13 |
13 |
13 |
1 |
14 |
$C_{13}:C_6$ (as 13T5) |
$ [7/6]_{6}$ |
| 13.13.14.5 |
x13 + 104x2 + 13 |
13 |
13 |
1 |
14 |
$C_{13}:C_6$ (as 13T5) |
$ [7/6]_{6}$ |
| 13.13.14.6 |
x13 + 143x2 + 13 |
13 |
13 |
1 |
14 |
$C_{13}:C_6$ (as 13T5) |
$ [7/6]_{6}$ |
| 13.13.14.7 |
x13 + 13x2 + 13 |
13 |
13 |
1 |
14 |
$F_{13}$ (as 13T6) |
$ [7/6]_{6}^{2}$ |
| 13.13.14.8 |
x13 + 39x2 + 13 |
13 |
13 |
1 |
14 |
$F_{13}$ (as 13T6) |
$ [7/6]_{6}^{2}$ |
| 13.13.14.9 |
x13 + 52x2 + 13 |
13 |
13 |
1 |
14 |
$F_{13}$ (as 13T6) |
$ [7/6]_{6}^{2}$ |
| 13.13.15.1 |
x13 + 52x3 + 13 |
13 |
13 |
1 |
15 |
$C_{13}:C_4$ (as 13T4) |
$ [5/4]_{4}$ |
| 13.13.15.10 |
x13 + 65x3 + 13 |
13 |
13 |
1 |
15 |
$F_{13}$ (as 13T6) |
$ [5/4]_{4}^{3}$ |
| 13.13.15.11 |
x13 + 104x3 + 13 |
13 |
13 |
1 |
15 |
$F_{13}$ (as 13T6) |
$ [5/4]_{4}^{3}$ |
| 13.13.15.12 |
x13 + 143x3 + 13 |
13 |
13 |
1 |
15 |
$F_{13}$ (as 13T6) |
$ [5/4]_{4}^{3}$ |
| 13.13.15.2 |
x13 + 117x3 + 13 |
13 |
13 |
1 |
15 |
$C_{13}:C_4$ (as 13T4) |
$ [5/4]_{4}$ |
| 13.13.15.3 |
x13 + 13x3 + 13 |
13 |
13 |
1 |
15 |
$F_{13}$ (as 13T6) |
$ [5/4]_{4}^{3}$ |
| 13.13.15.4 |
x13 + 39x3 + 13 |
13 |
13 |
1 |
15 |
$F_{13}$ (as 13T6) |
$ [5/4]_{4}^{3}$ |
| 13.13.15.5 |
x13 + 130x3 + 13 |
13 |
13 |
1 |
15 |
$F_{13}$ (as 13T6) |
$ [5/4]_{4}^{3}$ |
| 13.13.15.6 |
x13 + 156x3 + 13 |
13 |
13 |
1 |
15 |
$F_{13}$ (as 13T6) |
$ [5/4]_{4}^{3}$ |
| 13.13.15.7 |
x13 + 78x3 + 13 |
13 |
13 |
1 |
15 |
$C_{13}:C_4$ (as 13T4) |
$ [5/4]_{4}$ |
| 13.13.15.8 |
x13 + 91x3 + 13 |
13 |
13 |
1 |
15 |
$C_{13}:C_4$ (as 13T4) |
$ [5/4]_{4}$ |
| 13.13.15.9 |
x13 + 26x3 + 13 |
13 |
13 |
1 |
15 |
$F_{13}$ (as 13T6) |
$ [5/4]_{4}^{3}$ |
| 13.13.16.1 |
x13 + 52x4 + 13 |
13 |
13 |
1 |
16 |
$C_{13}:C_3$ (as 13T3) |
$ [4/3]_{3}$ |
| 13.13.16.10 |
x13 + 91x4 + 13 |
13 |
13 |
1 |
16 |
$F_{13}$ (as 13T6) |
$ [4/3]_{3}^{4}$ |
| 13.13.16.11 |
x13 + 104x4 + 13 |
13 |
13 |
1 |
16 |
$F_{13}$ (as 13T6) |
$ [4/3]_{3}^{4}$ |
| 13.13.16.12 |
x13 + 143x4 + 13 |
13 |
13 |
1 |
16 |
$F_{13}$ (as 13T6) |
$ [4/3]_{3}^{4}$ |
| 13.13.16.2 |
x13 + 130x4 + 13 |
13 |
13 |
1 |
16 |
$C_{13}:C_3$ (as 13T3) |
$ [4/3]_{3}$ |
| 13.13.16.3 |
x13 + 156x4 + 13 |
13 |
13 |
1 |
16 |
$C_{13}:C_3$ (as 13T3) |
$ [4/3]_{3}$ |
| 13.13.16.4 |
x13 + 13x4 + 13 |
13 |
13 |
1 |
16 |
$C_{13}:C_6$ (as 13T5) |
$ [4/3]_{3}^{2}$ |
| 13.13.16.5 |
x13 + 39x4 + 13 |
13 |
13 |
1 |
16 |
$C_{13}:C_6$ (as 13T5) |
$ [4/3]_{3}^{2}$ |
| 13.13.16.6 |
x13 + 117x4 + 13 |
13 |
13 |
1 |
16 |
$C_{13}:C_6$ (as 13T5) |
$ [4/3]_{3}^{2}$ |
| 13.13.16.7 |
x13 + 26x4 + 13 |
13 |
13 |
1 |
16 |
$F_{13}$ (as 13T6) |
$ [4/3]_{3}^{4}$ |
| 13.13.16.8 |
x13 + 65x4 + 13 |
13 |
13 |
1 |
16 |
$F_{13}$ (as 13T6) |
$ [4/3]_{3}^{4}$ |
| 13.13.16.9 |
x13 + 78x4 + 13 |
13 |
13 |
1 |
16 |
$F_{13}$ (as 13T6) |
$ [4/3]_{3}^{4}$ |
| 13.13.17.1 |
x13 + 26x5 + 13 |
13 |
13 |
1 |
17 |
$F_{13}$ (as 13T6) |
$ [17/12]_{12}$ |
Next