Results (displaying all 28 matches)
| Label | Polynomial | $p$ | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13.12.0.1 | x12 + x2 - x + 2 | 13 | 1 | 12 | 0 | $C_{12}$ (as 12T1) | $ [\ ]^{12}$ |
| 13.12.6.1 | x12 + 338x8 + 8788x6 + 28561x4 + 19307236 | 13 | 2 | 6 | 6 | $C_6\times C_2$ (as 12T2) | $ [\ ]_{2}^{6}$ |
| 13.12.6.2 | x12 + 28561x4 - 742586x2 + 9653618 | 13 | 2 | 6 | 6 | $C_{12}$ (as 12T1) | $ [\ ]_{2}^{6}$ |
| 13.12.8.1 | x12 - 39x9 - 338x6 + 10985x3 + 228488 | 13 | 3 | 4 | 8 | $C_{12}$ (as 12T1) | $ [\ ]_{3}^{4}$ |
| 13.12.8.2 | x12 + 169x6 - 2197x3 + 57122 | 13 | 3 | 4 | 8 | $C_{12}$ (as 12T1) | $ [\ ]_{3}^{4}$ |
| 13.12.8.3 | x12 + 26x9 + 845x6 + 6591x3 + 114244 | 13 | 3 | 4 | 8 | $C_{12}$ (as 12T1) | $ [\ ]_{3}^{4}$ |
| 13.12.9.1 | x12 - 104x8 - 45968x4 - 2847312 | 13 | 4 | 3 | 9 | $C_{12}$ (as 12T1) | $ [\ ]_{4}^{3}$ |
| 13.12.9.2 | x12 - 52x8 + 676x4 - 79092 | 13 | 4 | 3 | 9 | $C_{12}$ (as 12T1) | $ [\ ]_{4}^{3}$ |
| 13.12.9.3 | x12 - 338x4 + 13182 | 13 | 4 | 3 | 9 | $C_{12}$ (as 12T1) | $ [\ ]_{4}^{3}$ |
| 13.12.9.4 | x12 + 234x8 + 16900x4 + 474552 | 13 | 4 | 3 | 9 | $C_{12}$ (as 12T1) | $ [\ ]_{4}^{3}$ |
| 13.12.10.1 | x12 - 117x6 + 10816 | 13 | 6 | 2 | 10 | $C_6\times C_2$ (as 12T2) | $ [\ ]_{6}^{2}$ |
| 13.12.10.2 | x12 + 39x6 + 676 | 13 | 6 | 2 | 10 | $C_6\times C_2$ (as 12T2) | $ [\ ]_{6}^{2}$ |
| 13.12.10.3 | x12 - 13x6 + 2704 | 13 | 6 | 2 | 10 | $C_6\times C_2$ (as 12T2) | $ [\ ]_{6}^{2}$ |
| 13.12.10.4 | x12 - 13x6 + 338 | 13 | 6 | 2 | 10 | $C_{12}$ (as 12T1) | $ [\ ]_{6}^{2}$ |
| 13.12.10.5 | x12 + 65x6 + 1352 | 13 | 6 | 2 | 10 | $C_{12}$ (as 12T1) | $ [\ ]_{6}^{2}$ |
| 13.12.10.6 | x12 - 143x6 + 5408 | 13 | 6 | 2 | 10 | $C_{12}$ (as 12T1) | $ [\ ]_{6}^{2}$ |
| 13.12.11.1 | x12 - 13 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.10 | x12 + 1664 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.11 | x12 + 6656 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.12 | x12 + 26624 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.2 | x12 - 52 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.3 | x12 - 208 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.4 | x12 - 832 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.5 | x12 - 3328 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.6 | x12 - 13312 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.7 | x12 + 26 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.8 | x12 + 104 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |
| 13.12.11.9 | x12 + 416 | 13 | 12 | 1 | 11 | $C_{12}$ (as 12T1) | $ [\ ]_{12}$ |