11.12.0.1 |
x12 - x + 7 |
$11$ |
$1$ |
$12$ |
$0$ |
$C_{12}$ (as 12T1) |
$ [\ ]^{12}$ |
11.12.6.1 |
x12 + 242x8 + 21296x6 + 14641x4 + 1932612x2 + 113379904 |
$11$ |
$2$ |
$6$ |
$6$ |
$C_6\times C_2$ (as 12T2) |
$ [\ ]_{2}^{6}$ |
11.12.6.2 |
x12 + 14641x4 - 322102x2 + 14172488 |
$11$ |
$2$ |
$6$ |
$6$ |
$C_{12}$ (as 12T1) |
$ [\ ]_{2}^{6}$ |
11.12.8.1 |
x12 - 33x9 + 363x6 - 1331x3 + 117128 |
$11$ |
$3$ |
$4$ |
$8$ |
$C_3 : C_4$ (as 12T5) |
$ [\ ]_{3}^{4}$ |
11.12.8.2 |
x12 - 1331x3 + 29282 |
$11$ |
$3$ |
$4$ |
$8$ |
$C_3\times (C_3 : C_4)$ (as 12T19) |
$ [\ ]_{3}^{12}$ |
11.12.9.1 |
x12 - 121x4 + 3993 |
$11$ |
$4$ |
$3$ |
$9$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{4}^{6}$ |
11.12.9.2 |
x12 - 22x8 + 121x4 - 11979 |
$11$ |
$4$ |
$3$ |
$9$ |
$D_4 \times C_3$ (as 12T14) |
$ [\ ]_{4}^{6}$ |
11.12.10.1 |
x12 + 3146x6 + 14235529 |
$11$ |
$6$ |
$2$ |
$10$ |
$D_6$ (as 12T3) |
$ [\ ]_{6}^{2}$ |
11.12.10.2 |
x12 + 143x6 + 5929 |
$11$ |
$6$ |
$2$ |
$10$ |
$C_6\times S_3$ (as 12T18) |
$ [\ ]_{6}^{6}$ |
11.12.10.3 |
x12 + 220x6 + 41503 |
$11$ |
$6$ |
$2$ |
$10$ |
$C_3 : C_4$ (as 12T5) |
$ [\ ]_{6}^{2}$ |
11.12.10.4 |
x12 - 11x6 + 847 |
$11$ |
$6$ |
$2$ |
$10$ |
$C_3\times (C_3 : C_4)$ (as 12T19) |
$ [\ ]_{6}^{6}$ |
11.12.11.1 |
x12 + 33 |
$11$ |
$12$ |
$1$ |
$11$ |
$D_{12}$ (as 12T12) |
$ [\ ]_{12}^{2}$ |
11.12.11.2 |
x12 - 11 |
$11$ |
$12$ |
$1$ |
$11$ |
$D_{12}$ (as 12T12) |
$ [\ ]_{12}^{2}$ |