Properties

Label 97.6.5.5
Base \(\Q_{97}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(5\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} + 12125 \)

Invariants

Base field: $\Q_{97}$
Degree $d$ : $6$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $5$
Discriminant root field: $\Q_{97}(\sqrt{97*})$
Root number: $-1$
$|\Gal(K/\Q_{ 97 })|$: $6$
This field is Galois and abelian over $\Q_{97}$.

Intermediate fields

$\Q_{97}(\sqrt{97*})$, 97.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{97}$
Relative Eisenstein polynomial:\( x^{6} + 12125 \)

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:$C_6$
Unramified degree:$1$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:$x^{6} - x^{5} - 331 x^{4} - 918 x^{3} + 4310 x^{2} + 8669 x + 2521$