Properties

Label 79.9.6.1
Base \(\Q_{79}\)
Degree \(9\)
e \(3\)
f \(3\)
c \(6\)
Galois group $C_3^2$ (as 9T2)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 948 x^{6} + 293327 x^{3} + 31554496 \)

Invariants

Base field: $\Q_{79}$
Degree $d$ : $9$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{79}$
Root number: $1$
$|\Gal(K/\Q_{ 79 })|$: $9$
This field is Galois and abelian over $\Q_{79}$.

Intermediate fields

79.3.0.1, 79.3.2.1, 79.3.2.2, 79.3.2.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:79.3.0.1 $\cong \Q_{79}(t)$ where $t$ is a root of \( x^{3} - x + 4 \)
Relative Eisenstein polynomial:$ x^{3} - 79 t^{3} \in\Q_{79}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3^2$ (as 9T2)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$3$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed