Properties

Label 79.6.5.2
Base \(\Q_{79}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(5\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} - 316 \)

Invariants

Base field: $\Q_{79}$
Degree $d$ : $6$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $5$
Discriminant root field: $\Q_{79}(\sqrt{79})$
Root number: $i$
$|\Gal(K/\Q_{ 79 })|$: $6$
This field is Galois and abelian over $\Q_{79}$.

Intermediate fields

$\Q_{79}(\sqrt{79})$, 79.3.2.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{79}$
Relative Eisenstein polynomial:\( x^{6} - 316 \)

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:$C_6$
Unramified degree:$1$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:$x^{6} - x^{5} - 625 x^{4} + 6810 x^{3} - 13985 x^{2} - 43097 x + 97553$