## Defining polynomial

\(x^{5} - x + 16\) |

## Invariants

Base field: | $\Q_{79}$ |

Degree $d$: | $5$ |

Ramification exponent $e$: | $1$ |

Residue field degree $f$: | $5$ |

Discriminant exponent $c$: | $0$ |

Discriminant root field: | $\Q_{79}$ |

Root number: | $1$ |

$|\Gal(K/\Q_{ 79 })|$: | $5$ |

This field is Galois and abelian over $\Q_{79}.$ |

## Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 79 }$. |

## Unramified/totally ramified tower

Unramified subfield: | 79.5.0.1 $\cong \Q_{79}(t)$ where $t$ is a root of \( x^{5} - x + 16 \) |

Relative Eisenstein polynomial: | \( x - 79 \)$\ \in\Q_{79}(t)[x]$ |

## Invariants of the Galois closure

Galois group: | $C_5$ (as 5T1) |

Inertia group: | trivial |

Unramified degree: | $5$ |

Tame degree: | $1$ |

Wild slopes: | None |

Galois mean slope: | $0$ |

Galois splitting model: | $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ |