Properties

Label 79.4.0.1
Base \(\Q_{79}\)
Degree \(4\)
e \(1\)
f \(4\)
c \(0\)
Galois group $C_4$ (as 4T1)

Related objects

Learn more about

Defining polynomial

\( x^{4} - x + 3 \)

Invariants

Base field: $\Q_{79}$
Degree $d$ : $4$
Ramification exponent $e$ : $1$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $0$
Discriminant root field: $\Q_{79}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 79 })|$: $4$
This field is Galois and abelian over $\Q_{79}$.

Intermediate fields

$\Q_{79}(\sqrt{*})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:79.4.0.1 $\cong \Q_{79}(t)$ where $t$ is a root of \( x^{4} - x + 3 \)
Relative Eisenstein polynomial:$ x - 79 \in\Q_{79}(t)[x]$

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:Trivial
Unramified degree:$4$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{4} - x^{3} - 6 x^{2} + x + 1$