Properties

Label 73.9.8.1
Base \(\Q_{73}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(8\)
Galois group $C_9$ (as 9T1)

Related objects

Learn more about

Defining polynomial

\( x^{9} - 73 \)

Invariants

Base field: $\Q_{73}$
Degree $d$ : $9$
Ramification exponent $e$ : $9$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $8$
Discriminant root field: $\Q_{73}$
Root number: $1$
$|\Gal(K/\Q_{ 73 })|$: $9$
This field is Galois and abelian over $\Q_{73}$.

Intermediate fields

73.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{73}$
Relative Eisenstein polynomial:\( x^{9} - 73 \)

Invariants of the Galois closure

Galois group:$C_9$ (as 9T1)
Inertia group:$C_9$
Unramified degree:$1$
Tame degree:$9$
Wild slopes:None
Galois mean slope:$8/9$
Galois splitting model:Not computed