Properties

Label 73.15.10.1
Base \(\Q_{73}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(10\)
Galois group $C_{15}$ (as 15T1)

Related objects

Learn more about

Defining polynomial

\( x^{15} + 5835255 x^{6} - 28398241 x^{3} + 259133949125 \)

Invariants

Base field: $\Q_{73}$
Degree $d$ : $15$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $5$
Discriminant exponent $c$ : $10$
Discriminant root field: $\Q_{73}$
Root number: $1$
$|\Gal(K/\Q_{ 73 })|$: $15$
This field is Galois and abelian over $\Q_{73}$.

Intermediate fields

73.3.2.1, 73.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:73.5.0.1 $\cong \Q_{73}(t)$ where $t$ is a root of \( x^{5} - x + 5 \)
Relative Eisenstein polynomial:$ x^{3} - 73 t^{3} \in\Q_{73}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{15}$ (as 15T1)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$5$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed