Properties

Label 73.12.11.2
Base \(\Q_{73}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(11\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 1825 \)

Invariants

Base field: $\Q_{73}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $11$
Discriminant root field: $\Q_{73}(\sqrt{73})$
Root number: $1$
$|\Gal(K/\Q_{ 73 })|$: $12$
This field is Galois and abelian over $\Q_{73}$.

Intermediate fields

$\Q_{73}(\sqrt{73})$, 73.3.2.3, 73.4.3.2, 73.6.5.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{73}$
Relative Eisenstein polynomial:\( x^{12} - 1825 \)

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:$C_{12}$
Unramified degree:$1$
Tame degree:$12$
Wild slopes:None
Galois mean slope:$11/12$
Galois splitting model:Not computed