Properties

Label 71.8.0.1
Base \(\Q_{71}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 53 x^{3} + 22 x^{2} + 19 x + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{71}$
Degree $d$: $8$
Ramification exponent $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{71}(\sqrt{7})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 71 }) }$: $8$
This field is Galois and abelian over $\Q_{71}.$
Visible slopes:None

Intermediate fields

$\Q_{71}(\sqrt{7})$, 71.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:71.8.0.1 $\cong \Q_{71}(t)$ where $t$ is a root of \( x^{8} + 53 x^{3} + 22 x^{2} + 19 x + 7 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 71 \) $\ \in\Q_{71}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$8$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1$