Properties

Label 7.9.0.1
Base \(\Q_{7}\)
Degree \(9\)
e \(1\)
f \(9\)
c \(0\)
Galois group $C_9$ (as 9T1)

Related objects

Learn more about

Defining polynomial

\( x^{9} + x^{2} - 6 x + 2 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $9$
Ramification exponent $e$ : $1$
Residue field degree $f$ : $9$
Discriminant exponent $c$ : $0$
Discriminant root field: $\Q_{7}$
Root number: $1$
$|\Gal(K/\Q_{ 7 })|$: $9$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

7.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:7.9.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{9} + x^{2} - 6 x + 2 \)
Relative Eisenstein polynomial:$ x - 7 \in\Q_{7}(t)[x]$

Invariants of the Galois closure

Galois group:$C_9$ (as 9T1)
Inertia group:Trivial
Unramified degree:$9$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{9} - 9 x^{7} + 27 x^{5} - 30 x^{3} + 9 x - 1$