Defining polynomial
\( x^{7} + 14 x^{3} + 7 \) |
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $7$ |
Ramification exponent $e$: | $7$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{7}(\sqrt{7})$ |
Root number: | $i$ |
$|\Aut(K/\Q_{ 7 })|$: | $1$ |
This field is not Galois over $\Q_{7}.$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{7}$ |
Relative Eisenstein polynomial: | \( x^{7} + 14 x^{3} + 7 \) |
Invariants of the Galois closure
Galois group: | $D_7$ (as 7T2) |
Inertia group: | $D_{7}$ |
Unramified degree: | $1$ |
Tame degree: | $2$ |
Wild slopes: | [3/2] |
Galois mean slope: | $19/14$ |
Galois splitting model: | $x^{7} - 182 x^{5} - 182 x^{4} + 5369 x^{3} + 15834 x^{2} - 25168$ |