Defining polynomial
\( x^{7} - 7 x^{6} + 301 \) |
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $7$ |
Ramification exponent $e$: | $7$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{7}$ |
Root number: | $1$ |
$|\Gal(K/\Q_{ 7 })|$: | $7$ |
This field is Galois and abelian over $\Q_{7}.$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{7}$ |
Relative Eisenstein polynomial: | \( x^{7} - 7 x^{6} + 301 \) |
Invariants of the Galois closure
Galois group: | $C_7$ (as 7T1) |
Inertia group: | $C_7$ |
Unramified degree: | $1$ |
Tame degree: | $1$ |
Wild slopes: | [2] |
Galois mean slope: | $12/7$ |
Galois splitting model: | $x^{7} - 363993 x^{5} - 20747601 x^{4} + 40809560519 x^{3} + 4469096104858 x^{2} - 1277790032103536 x - 177449650880358373$ |