Defining polynomial
\(x^{7} - 7 x^{6} + 154\) ![]() |
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $7$ |
Ramification exponent $e$: | $7$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{7}$ |
Root number: | $1$ |
$|\Gal(K/\Q_{ 7 })|$: | $7$ |
This field is Galois and abelian over $\Q_{7}.$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{7}$ |
Relative Eisenstein polynomial: | \( x^{7} - 7 x^{6} + 154 \) ![]() |
Invariants of the Galois closure
Galois group: | $C_7$ (as 7T1) |
Inertia group: | $C_7$ |
Unramified degree: | $1$ |
Tame degree: | $1$ |
Wild slopes: | [2] |
Galois mean slope: | $12/7$ |
Galois splitting model: | $x^{7} - 305193 x^{5} - 17396001 x^{4} + 31813013127 x^{3} + 3355838747856 x^{2} - 1120814637257980 x - 161936091000794025$ ![]() |