Properties

Label 7.3.0.1
Base \(\Q_{7}\)
Degree \(3\)
e \(1\)
f \(3\)
c \(0\)
Galois group $C_3$ (as 3T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{3} + 6 x^{2} + 4\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $3$
Ramification exponent $e$: $1$
Residue field degree $f$: $3$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{7}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 7 }) }$: $3$
This field is Galois and abelian over $\Q_{7}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Unramified/totally ramified tower

Unramified subfield:7.3.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{3} + 6 x^{2} + 4 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_3$ (as 3T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{3} - 3 x - 1$