Properties

Label 7.14.25.89
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(25\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} - 14 x^{13} + 21 x^{12} + 14 x^{7} - 21 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $25$
Discriminant root field: $\Q_{7}(\sqrt{7*})$
Root number: $-i$
$|\Gal(K/\Q_{ 7 })|$: $14$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{7*})$, 7.7.12.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial:\( x^{14} - 14 x^{13} + 21 x^{12} + 14 x^{7} - 21 \)

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:$C_{14}$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[2]
Galois mean slope:$25/14$
Galois splitting model:$x^{14} - 812 x^{11} - 25375 x^{10} + 91350 x^{9} + 5325705 x^{8} - 4215266 x^{7} - 437392326 x^{6} + 329836836 x^{5} + 19700239139 x^{4} - 19413083053 x^{3} - 423674050058 x^{2} + 251900249993 x + 3854284665359$