Properties

Label 7.14.25.75
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(25\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 112 x^{13} + 28 x^{12} - 98 x^{11} + 147 x^{10} + 98 x^{9} + 49 x^{8} - 161 x^{7} + 49 x^{6} + 147 x^{5} + 147 x^{2} - 147 x - 126 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $25$
Discriminant root field: $\Q_{7}(\sqrt{7})$
Root number: $i$
$|\Gal(K/\Q_{ 7 })|$: $14$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{7})$, 7.7.12.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial:\( x^{14} + 112 x^{13} + 28 x^{12} - 98 x^{11} + 147 x^{10} + 98 x^{9} + 49 x^{8} - 161 x^{7} + 49 x^{6} + 147 x^{5} + 147 x^{2} - 147 x - 126 \)

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:$C_{14}$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[2]
Galois mean slope:$25/14$
Galois splitting model:$x^{14} + 42 x^{12} - 119 x^{11} + 553 x^{10} - 2702 x^{9} + 6174 x^{8} - 15735 x^{7} + 36995 x^{6} - 61572 x^{5} + 88655 x^{4} - 58940 x^{3} + 2863 x^{2} - 4557 x + 30361$