Properties

Label 7.14.25.73
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(25\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 35 x^{13} + 21 x^{12} + 98 x^{11} - 49 x^{10} + 147 x^{9} - 147 x^{8} + 14 x^{7} - 49 x^{6} + 147 x^{5} + 98 x^{4} + 147 x^{3} + 49 x^{2} - 49 x + 28 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $25$
Discriminant root field: $\Q_{7}(\sqrt{7*})$
Root number: $-i$
$|\Gal(K/\Q_{ 7 })|$: $14$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{7*})$, 7.7.12.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial:\( x^{14} + 35 x^{13} + 21 x^{12} + 98 x^{11} - 49 x^{10} + 147 x^{9} - 147 x^{8} + 14 x^{7} - 49 x^{6} + 147 x^{5} + 98 x^{4} + 147 x^{3} + 49 x^{2} - 49 x + 28 \)

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:$C_{14}$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[2]
Galois mean slope:$25/14$
Galois splitting model:$x^{14} - 812 x^{11} - 12586 x^{10} + 111244 x^{9} + 4778620 x^{8} + 14868764 x^{7} - 194794943 x^{6} - 607090988 x^{5} + 9763306924 x^{4} - 4870385744 x^{3} - 61788068160 x^{2} + 140686678272 x + 1192124954624$