Properties

Label 7.14.25.54
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(25\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} - 119 x^{13} + 133 x^{12} - 98 x^{11} + 98 x^{10} + 98 x^{9} - 49 x^{8} + 21 x^{7} + 147 x^{6} + 98 x^{5} - 49 x^{4} + 49 x^{2} - 147 x + 112 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $25$
Discriminant root field: $\Q_{7}(\sqrt{7*})$
Root number: $-i$
$|\Gal(K/\Q_{ 7 })|$: $14$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{7*})$, 7.7.12.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial:\( x^{14} - 119 x^{13} + 133 x^{12} - 98 x^{11} + 98 x^{10} + 98 x^{9} - 49 x^{8} + 21 x^{7} + 147 x^{6} + 98 x^{5} - 49 x^{4} + 49 x^{2} - 147 x + 112 \)

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:$C_{14}$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[2]
Galois mean slope:$25/14$
Galois splitting model:$x^{14} - 812 x^{11} + 11571 x^{10} - 198534 x^{9} + 5169395 x^{8} - 38066328 x^{7} + 215110980 x^{6} - 2112867848 x^{5} + 12080530203 x^{4} - 43947685383 x^{3} + 263153797984 x^{2} - 206678117415 x + 1787701529889$