Properties

Label 7.14.25.52
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(25\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} - 56 x^{13} - 112 x^{12} + 49 x^{11} + 98 x^{10} - 147 x^{9} - 42 x^{7} + 98 x^{6} - 49 x^{5} + 98 x^{4} - 98 x^{3} + 147 x - 84 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $25$
Discriminant root field: $\Q_{7}(\sqrt{7*})$
Root number: $-i$
$|\Gal(K/\Q_{ 7 })|$: $14$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{7*})$, 7.7.12.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial:\( x^{14} - 56 x^{13} - 112 x^{12} + 49 x^{11} + 98 x^{10} - 147 x^{9} - 42 x^{7} + 98 x^{6} - 49 x^{5} + 98 x^{4} - 98 x^{3} + 147 x - 84 \)

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:$C_{14}$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[2]
Galois mean slope:$25/14$
Galois splitting model:$x^{14} - 812 x^{11} + 8729 x^{10} + 239134 x^{9} + 5865685 x^{8} + 70091666 x^{7} + 733767454 x^{6} + 5616786700 x^{5} + 39308800027 x^{4} + 200176985575 x^{3} + 941525394390 x^{2} + 2923659885741 x + 7775628764171$