Properties

Label 7.14.24.53
Base \(\Q_{7}\)
Degree \(14\)
e \(7\)
f \(2\)
c \(24\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $14$
Ramification exponent $e$ : $7$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{7}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 7 })|$: $14$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{*})$, 7.7.12.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}(\sqrt{*})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} - x + 3 \)
Relative Eisenstein polynomial:$ x^{7} + \left(301 t + 203\right) x^{6} + \left(245 t + 147\right) x^{5} + \left(147 t + 245\right) x^{4} + \left(245 t + 49\right) x^{3} + \left(245 t + 98\right) x^{2} + \left(49 t + 196\right) x + 252 t + 280 \in\Q_{7}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:Intransitive group isomorphic to $C_7$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$12/7$
Galois splitting model:$x^{14} + 42 x^{12} + 623 x^{10} + 4431 x^{8} + 16513 x^{6} + 31906 x^{4} + 28784 x^{2} + 9409$