Properties

Label 7.14.15.9
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(15\)
Galois group $F_7$ (as 14T4)

Related objects

Learn more about

Defining polynomial

\( x^{14} - 7 x^{13} - 21 x^{12} + 21 x^{11} + 21 x^{10} + 14 x^{9} - 7 x^{7} - 14 x^{5} - 14 x^{4} + 7 x^{3} + 14 x^{2} + 14 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{7}(\sqrt{7*})$
Root number: $-i$
$|\Aut(K/\Q_{ 7 })|$: $2$
This field is not Galois over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{7*})$, 7.7.7.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial:\( x^{14} - 7 x^{13} - 21 x^{12} + 21 x^{11} + 21 x^{10} + 14 x^{9} - 7 x^{7} - 14 x^{5} - 14 x^{4} + 7 x^{3} + 14 x^{2} + 14 \)

Invariants of the Galois closure

Galois group:$F_7$ (as 14T4)
Inertia group:$F_7$
Unramified degree:$1$
Tame degree:$6$
Wild slopes:[7/6]
Galois mean slope:$47/42$
Galois splitting model:$x^{14} - 7 x^{13} + 49 x^{12} - 203 x^{11} + 693 x^{10} - 1771 x^{9} + 3787 x^{8} - 6469 x^{7} + 15323 x^{6} - 28833 x^{5} + 30835 x^{4} - 18585 x^{3} + 6251 x^{2} - 1071 x + 72$