Properties

Label 7.14.14.14
Base \(\Q_{7}\)
Degree \(14\)
e \(7\)
f \(2\)
c \(14\)
Galois group $D_7:F_7$ (as 14T24)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} - 14 x^{9} - 140 x^{8} + 14 x^{7} - 245 x^{4} - 1372 x^{3} + 98 x^{2} - 980 x + 49\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $14$
Ramification exponent $e$: $7$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 7 }) }$: $1$
This field is not Galois over $\Q_{7}.$
Visible slopes:$[7/6]$

Intermediate fields

$\Q_{7}(\sqrt{3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + \left(7 t + 14\right) x^{2} + \left(28 t + 14\right) x + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 3t + 5$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$D_7:F_7$ (as 14T24)
Inertia group:Intransitive group isomorphic to $C_7:F_7$
Wild inertia group:$C_7^2$
Unramified degree:$2$
Tame degree:$6$
Wild slopes:$[7/6, 7/6]$
Galois mean slope:$341/294$
Galois splitting model: $x^{14} - 14 x^{11} + 63 x^{10} - 126 x^{9} - 91 x^{8} + 354 x^{7} - 147 x^{6} - 1274 x^{5} + 3864 x^{4} - 2625 x^{3} + 595 x^{2} + 525 x - 225$ Copy content Toggle raw display