Defining polynomial
| \( x^{13} - 7 \) |
Invariants
| Base field: | $\Q_{7}$ |
| Degree $d$ : | $13$ |
| Ramification exponent $e$ : | $13$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $12$ |
| Discriminant root field: | $\Q_{7}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 7 })|$: | $1$ |
| This field is not Galois over $\Q_{7}$. | |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$. |
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{7}$ |
| Relative Eisenstein polynomial: | \( x^{13} - 7 \) |
Invariants of the Galois closure
| Galois group: | $F_{13}$ (as 13T6) |
| Inertia group: | $C_{13}$ |
| Unramified degree: | $12$ |
| Tame degree: | $13$ |
| Wild slopes: | None |
| Galois mean slope: | $12/13$ |
| Galois splitting model: | $x^{13} - 26 x^{12} + 312 x^{11} - 2288 x^{10} + 11440 x^{9} - 41184 x^{8} + 109824 x^{7} - 219648 x^{6} + 329472 x^{5} - 366080 x^{4} + 292864 x^{3} - 159744 x^{2} + 53248 x - 8199$ |