Defining polynomial
\(x^{12} - 49 x^{4} + 686\) ![]() |
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{7}(\sqrt{7})$ |
Root number: | $-i$ |
$|\Aut(K/\Q_{ 7 })|$: | $6$ |
This field is not Galois over $\Q_{7}.$ |
Intermediate fields
$\Q_{7}(\sqrt{7\cdot 3})$, 7.3.0.1, 7.4.3.1, 7.6.3.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 7.3.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{3} - x + 2 \) ![]() |
Relative Eisenstein polynomial: | \( x^{4} - 7 t \)$\ \in\Q_{7}(t)[x]$ ![]() |
Invariants of the Galois closure
Galois group: | $C_3\times D_4$ (as 12T14) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Unramified degree: | $6$ |
Tame degree: | $4$ |
Wild slopes: | None |
Galois mean slope: | $3/4$ |
Galois splitting model: | $x^{12} + 15 x^{10} - 4 x^{9} + 45 x^{8} - 3 x^{7} - 81 x^{6} + 36 x^{5} + 264 x^{4} + 104 x^{3} + 108 x^{2} + 48 x + 8$ ![]() |