Defining polynomial
| \( x^{12} + 7203 x^{4} - 16807 x^{2} + 588245 \) |
Invariants
| Base field: | $\Q_{7}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $2$ |
| Residue field degree $f$ : | $6$ |
| Discriminant exponent $c$ : | $6$ |
| Discriminant root field: | $\Q_{7}(\sqrt{*})$ |
| Root number: | $-1$ |
| $|\Gal(K/\Q_{ 7 })|$: | $12$ |
| This field is Galois and abelian over $\Q_{7}$. | |
Intermediate fields
| $\Q_{7}(\sqrt{*})$, 7.3.0.1, 7.4.2.2, 7.6.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 7.6.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{6} + 3 x^{2} - x + 5 \) |
| Relative Eisenstein polynomial: | $ x^{2} - 7 t \in\Q_{7}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_{12}$ (as 12T1) |
| Inertia group: | Intransitive group isomorphic to $C_2$ |
| Unramified degree: | $6$ |
| Tame degree: | $2$ |
| Wild slopes: | None |
| Galois mean slope: | $1/2$ |
| Galois splitting model: | $x^{12} - x^{11} - 25 x^{10} + 25 x^{9} + 235 x^{8} - 235 x^{7} - 1013 x^{6} + 1013 x^{5} + 1899 x^{4} - 1899 x^{3} - 1013 x^{2} + 1013 x - 181$ |