Defining polynomial
\( x^{12} - 28 \) |
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $11$ |
Discriminant root field: | $\Q_{7}(\sqrt{7\cdot 3})$ |
Root number: | $i$ |
$|\Aut(K/\Q_{ 7 })|$: | $6$ |
This field is not Galois over $\Q_{7}.$ |
Intermediate fields
$\Q_{7}(\sqrt{7})$, 7.3.2.3, 7.4.3.2, 7.6.5.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{7}$ |
Relative Eisenstein polynomial: | \( x^{12} - 28 \) |
Invariants of the Galois closure
Galois group: | $C_3\times D_4$ (as 12T14) |
Inertia group: | $C_{12}$ |
Unramified degree: | $2$ |
Tame degree: | $12$ |
Wild slopes: | None |
Galois mean slope: | $11/12$ |
Galois splitting model: | $x^{12} - 42 x^{10} - 56 x^{9} + 315 x^{8} + 336 x^{7} - 2870 x^{6} - 7056 x^{5} - 2079 x^{4} + 7896 x^{3} + 7056 x^{2} - 1792$ |