Defining polynomial
| \( x^{12} - 217 x^{6} + 11907 \) |
Invariants
| Base field: | $\Q_{7}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $6$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $10$ |
| Discriminant root field: | $\Q_{7}(\sqrt{*})$ |
| Root number: | $-1$ |
| $|\Gal(K/\Q_{ 7 })|$: | $12$ |
| This field is Galois and abelian over $\Q_{7}$. | |
Intermediate fields
| $\Q_{7}(\sqrt{*})$, 7.3.2.3, 7.4.2.2, 7.6.4.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{7}(\sqrt{*})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} - x + 3 \) |
| Relative Eisenstein polynomial: | $ x^{6} - 7 t^{5} \in\Q_{7}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_{12}$ (as 12T1) |
| Inertia group: | Intransitive group isomorphic to $C_6$ |
| Unramified degree: | $2$ |
| Tame degree: | $6$ |
| Wild slopes: | None |
| Galois mean slope: | $5/6$ |
| Galois splitting model: | $x^{12} - x^{11} - 38 x^{10} - 14 x^{9} + 495 x^{8} + 688 x^{7} - 2157 x^{6} - 5123 x^{5} - 25 x^{4} + 7175 x^{3} + 4538 x^{2} - 807 x - 909$ |