Defining polynomial
\( x^{12} - 7 x^{6} + 147 \) |
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $6$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{7}(\sqrt{3})$ |
Root number: | $-1$ |
$|\Gal(K/\Q_{ 7 })|$: | $12$ |
This field is Galois and abelian over $\Q_{7}.$ |
Intermediate fields
$\Q_{7}(\sqrt{3})$, 7.3.2.1, 7.4.2.2, 7.6.4.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} - x + 3 \) |
Relative Eisenstein polynomial: | $ x^{6} - 7 t \in\Q_{7}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_{12}$ (as 12T1) |
Inertia group: | Intransitive group isomorphic to $C_6$ |
Unramified degree: | $2$ |
Tame degree: | $6$ |
Wild slopes: | None |
Galois mean slope: | $5/6$ |
Galois splitting model: | $x^{12} - x^{11} - 38 x^{10} - 14 x^{9} + 495 x^{8} + 688 x^{7} - 2157 x^{6} - 5123 x^{5} - 25 x^{4} + 7175 x^{3} + 4629 x^{2} - 534 x - 727$ |