Properties

Label 67.12.8.1
Base \(\Q_{67}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 201 x^{9} + 13467 x^{6} - 300763 x^{3} + 161208968 \)

Invariants

Base field: $\Q_{67}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $8$
Discriminant root field: $\Q_{67}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 67 })|$: $12$
This field is Galois and abelian over $\Q_{67}$.

Intermediate fields

$\Q_{67}(\sqrt{*})$, 67.3.2.1, 67.4.0.1, 67.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:67.4.0.1 $\cong \Q_{67}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} - 67 t^{3} \in\Q_{67}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$4$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed