Properties

Label 61.12.9.1
Base \(\Q_{61}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(9\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 122 x^{8} - 1484679 x^{4} - 2269810000 \)

Invariants

Base field: $\Q_{61}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $9$
Discriminant root field: $\Q_{61}(\sqrt{61})$
Root number: $-1$
$|\Gal(K/\Q_{ 61 })|$: $12$
This field is Galois and abelian over $\Q_{61}$.

Intermediate fields

$\Q_{61}(\sqrt{61})$, 61.3.0.1, 61.4.3.1, 61.6.3.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:61.3.0.1 $\cong \Q_{61}(t)$ where $t$ is a root of \( x^{3} - x + 10 \)
Relative Eisenstein polynomial:$ x^{4} - 61 t^{4} \in\Q_{61}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$3$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:Not computed