Properties

Label 59.8.0.1
Base \(\Q_{59}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Learn more about

Defining polynomial

\( x^{8} - x + 14 \)

Invariants

Base field: $\Q_{59}$
Degree $d$ : $8$
Ramification exponent $e$ : $1$
Residue field degree $f$ : $8$
Discriminant exponent $c$ : $0$
Discriminant root field: $\Q_{59}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 59 })|$: $8$
This field is Galois and abelian over $\Q_{59}$.

Intermediate fields

$\Q_{59}(\sqrt{*})$, 59.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:59.8.0.1 $\cong \Q_{59}(t)$ where $t$ is a root of \( x^{8} - x + 14 \)
Relative Eisenstein polynomial:$ x - 59 \in\Q_{59}(t)[x]$

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:Trivial
Unramified degree:$8$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{8} - x^{7} + 5 x^{6} + 17 x^{5} - 46 x^{4} + 136 x^{3} + 320 x^{2} - 512 x + 4096$