Defining polynomial
\(x^{4} + 477 x^{2} + 70225\) ![]() |
Invariants
Base field: | $\Q_{53}$ |
Degree $d$: | $4$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $2$ |
Discriminant root field: | $\Q_{53}$ |
Root number: | $-1$ |
$|\Gal(K/\Q_{ 53 })|$: | $4$ |
This field is Galois and abelian over $\Q_{53}.$ |
Intermediate fields
$\Q_{53}(\sqrt{2})$, $\Q_{53}(\sqrt{53})$, $\Q_{53}(\sqrt{53\cdot 2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{53}(\sqrt{2})$ $\cong \Q_{53}(t)$ where $t$ is a root of \( x^{2} - x + 5 \) ![]() |
Relative Eisenstein polynomial: | \( x^{2} - 53 t^{2} \)$\ \in\Q_{53}(t)[x]$ ![]() |
Invariants of the Galois closure
Galois group: | $C_2^2$ (as 4T2) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Unramified degree: | $2$ |
Tame degree: | $2$ |
Wild slopes: | None |
Galois mean slope: | $1/2$ |
Galois splitting model: | $x^{4} + 477 x^{2} + 70225$ ![]() |