Base \(\Q_{5}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(5\)
Galois group $F_5$ (as 5T3)

Related objects

Learn more about

Defining polynomial

\(x^{5} + 5 x + 5\)  Toggle raw display


Base field: $\Q_{5}$
Degree $d$: $5$
Ramification exponent $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $-1$
$|\Aut(K/\Q_{ 5 })|$: $1$
This field is not Galois over $\Q_{5}.$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial:\( x^{5} + 5 x + 5 \)  Toggle raw display

Invariants of the Galois closure

Galois group:$F_5$ (as 5T3)
Inertia group:$F_5$
Unramified degree:$1$
Tame degree:$4$
Wild slopes:[5/4]
Galois mean slope:$23/20$
Galois splitting model:$x^{5} - 12$