Properties

Label 5.2.0.1
Base \(\Q_{5}\)
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)
Galois group $C_2$ (as 2T1)

Related objects

Learn more about

Defining polynomial

\(x^{2} - x + 2\)  Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $2$
Ramification exponent $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$|\Gal(K/\Q_{ 5 })|$: $2$
This field is Galois and abelian over $\Q_{5}.$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 5 \)$\ \in\Q_{5}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_2$ (as 2T1)
Inertia group:trivial
Unramified degree:$2$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{2} - x + 2$