Properties

Label 5.15.24.88
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(24\)
Galois group $C_{15}$ (as 15T1)

Related objects

Learn more about

Defining polynomial

\( x^{15} + 375 x^{14} + 415 x^{13} + 575 x^{12} + 520 x^{11} + 378 x^{10} + 145 x^{9} + 275 x^{8} + 85 x^{7} + 545 x^{6} + 127 x^{5} + 380 x^{4} + 470 x^{3} + 615 x + 368 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $15$
Ramification exponent $e$ : $5$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{5}$
Root number: $1$
$|\Gal(K/\Q_{ 5 })|$: $15$
This field is Galois and abelian over $\Q_{5}$.

Intermediate fields

5.3.0.1, 5.5.8.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} - x + 2 \)
Relative Eisenstein polynomial:$ x^{5} + \left(35 t^{2} + 50 t + 50\right) x^{4} + \left(50 t^{2} + 75 t\right) x^{3} + \left(100 t^{2} + 100 t + 75\right) x^{2} + \left(75 t^{2} + 50 t + 100\right) x + 45 t^{2} + 35 t + 5 \in\Q_{5}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{15}$ (as 15T1)
Inertia group:Intransitive group isomorphic to $C_5$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$8/5$
Galois splitting model:$x^{15} - 5 x^{14} - 30 x^{13} + 150 x^{12} + 305 x^{11} - 1539 x^{10} - 1350 x^{9} + 6825 x^{8} + 3115 x^{7} - 13645 x^{6} - 4757 x^{5} + 11735 x^{4} + 3765 x^{3} - 3500 x^{2} - 770 x + 301$