Properties

Label 5.15.17.3
Base \(\Q_{5}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(17\)
Galois group $F_5 \times S_3$ (as 15T11)

Related objects

Learn more about

Defining polynomial

\( x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $15$
Ramification exponent $e$ : $15$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $17$
Discriminant root field: $\Q_{5}(\sqrt{5*})$
Root number: $1$
$|\Aut(K/\Q_{ 5 })|$: $1$
This field is not Galois over $\Q_{5}$.

Intermediate fields

5.3.2.1, 5.5.5.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial:\( x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10 \)

Invariants of the Galois closure

Galois group:$S_3\times F_5$ (as 15T11)
Inertia group:$F_5\times C_3$
Unramified degree:$2$
Tame degree:$12$
Wild slopes:[5/4]
Galois mean slope:$71/60$
Galois splitting model:$x^{15} - 5 x^{14} + 20 x^{13} - 65 x^{12} + 165 x^{11} - 338 x^{10} + 610 x^{9} - 1315 x^{8} + 4780 x^{7} - 8080 x^{6} + 7248 x^{5} + 4645 x^{4} - 12205 x^{3} + 2035 x^{2} + 8290 x + 2089$