Properties

Label 5.15.15.39
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(15\)
Galois group $(C_5^2 : C_4):C_3$ (as 15T19)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} - 60 x^{12} + 15 x^{10} + 900 x^{9} - 300 x^{8} - 675 x^{7} + 9000 x^{6} + 22575 x^{5} + 14250 x^{4} - 125 x^{3} - 1875 x^{2} + 125\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification exponent $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $1$
This field is not Galois over $\Q_{5}.$
Visible slopes:$[5/4]$

Intermediate fields

5.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 10 t^{2} x^{2} + \left(5 t^{2} + 10\right) x + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 4t^{2} + 3$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_5^2:C_{12}$ (as 15T19)
Inertia group:Intransitive group isomorphic to $C_5:F_5$
Wild inertia group:$C_5^2$
Unramified degree:$3$
Tame degree:$4$
Wild slopes:$[5/4, 5/4]$
Galois mean slope:$123/100$
Galois splitting model:$x^{15} - 95 x^{13} + 3365 x^{11} - 192 x^{10} - 57850 x^{9} + 4810 x^{8} + 511225 x^{7} - 11830 x^{6} - 2226068 x^{5} - 329550 x^{4} + 4009525 x^{3} + 1428050 x^{2} - 1142440 x - 228488$