Defining polynomial
| \( x^{15} + 10 x^{14} + 10 x^{12} + 15 x^{11} + 22 x^{10} + 5 x^{9} + 20 x^{8} + 5 x^{7} + 22 x^{5} + 5 x^{4} + 15 x^{3} + 5 x + 17 \) |
Invariants
| Base field: | $\Q_{5}$ |
| Degree $d$ : | $15$ |
| Ramification exponent $e$ : | $5$ |
| Residue field degree $f$ : | $3$ |
| Discriminant exponent $c$ : | $15$ |
| Discriminant root field: | $\Q_{5}(\sqrt{5*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 5 })|$: | $1$ |
| This field is not Galois over $\Q_{5}$. | |
Intermediate fields
| 5.3.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} - x + 2 \) |
| Relative Eisenstein polynomial: | $ x^{5} + \left(20 t + 15\right) x^{4} + \left(10 t^{2} + 20 t + 20\right) x^{3} + \left(15 t^{2} + 10 t\right) x^{2} + \left(20 t^{2} + 10 t + 15\right) x + 15 t^{2} + 15 t + 20 \in\Q_{5}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | 15T38 |
| Inertia group: | Intransitive group isomorphic to $C_5^2:D_5.C_2$ |
| Unramified degree: | $3$ |
| Tame degree: | $4$ |
| Wild slopes: | [5/4, 5/4, 5/4] |
| Galois mean slope: | $623/500$ |
| Galois splitting model: | $x^{15} + 10 x^{13} - 160 x^{12} + 275 x^{11} + 424 x^{10} + 1950 x^{9} - 24540 x^{8} + 88250 x^{7} - 177780 x^{6} + 282484 x^{5} - 651400 x^{4} + 1547215 x^{3} - 2167260 x^{2} + 1465280 x - 348608$ |