Properties

Label 5.15.15.26
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(15\)
Galois group 15T38

Related objects

Learn more about

Defining polynomial

\(x^{15} + 10 x^{14} + 10 x^{12} + 15 x^{11} + 22 x^{10} + 5 x^{9} + 20 x^{8} + 5 x^{7} + 22 x^{5} + 5 x^{4} + 15 x^{3} + 5 x + 17\)  Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification exponent $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{5}(\sqrt{5\cdot 2})$
Root number: $1$
$|\Aut(K/\Q_{ 5 })|$: $1$
This field is not Galois over $\Q_{5}.$

Intermediate fields

5.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} - x + 2 \)  Toggle raw display
Relative Eisenstein polynomial:\( x^{5} + \left(20 t + 15\right) x^{4} + \left(10 t^{2} + 20 t + 20\right) x^{3} + \left(15 t^{2} + 10 t\right) x^{2} + \left(20 t^{2} + 10 t + 15\right) x + 15 t^{2} + 15 t + 20 \)$\ \in\Q_{5}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:15T38
Inertia group:Intransitive group isomorphic to $C_5^2:D_5.C_2$
Unramified degree:$3$
Tame degree:$4$
Wild slopes:[5/4, 5/4, 5/4]
Galois mean slope:$623/500$
Galois splitting model:$x^{15} + 10 x^{13} - 160 x^{12} + 275 x^{11} + 424 x^{10} + 1950 x^{9} - 24540 x^{8} + 88250 x^{7} - 177780 x^{6} + 282484 x^{5} - 651400 x^{4} + 1547215 x^{3} - 2167260 x^{2} + 1465280 x - 348608$  Toggle raw display