Defining polynomial
\( x^{15} + 5 x^{14} + 5 x^{13} + 20 x^{12} + 20 x^{11} + 22 x^{10} + 20 x^{8} + 5 x^{7} + 12 x^{5} + 15 x^{4} + 5 x^{2} + 20 x + 12 \) |
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $15$ |
Ramification exponent $e$: | $5$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{5}(\sqrt{5\cdot 2})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 5 })|$: | $1$ |
This field is not Galois over $\Q_{5}.$ |
Intermediate fields
5.3.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} - x + 2 \) |
Relative Eisenstein polynomial: | $ x^{5} + \left(10 t^{2} + 5 t + 5\right) x^{4} + \left(15 t^{2} + 5\right) x^{3} + 10 t^{2} x^{2} + 10 t^{2} x + 15 t^{2} + 5 t + 15 \in\Q_{5}(t)[x]$ |
Invariants of the Galois closure
Galois group: | 15T38 |
Inertia group: | Intransitive group isomorphic to $C_5^2:D_5.C_2$ |
Unramified degree: | $3$ |
Tame degree: | $4$ |
Wild slopes: | [5/4, 5/4, 5/4] |
Galois mean slope: | $623/500$ |
Galois splitting model: | $x^{15} - 20 x^{13} - 20 x^{12} - 200 x^{11} - 964 x^{10} + 950 x^{9} - 1860 x^{8} - 11565 x^{7} + 117480 x^{6} + 213330 x^{5} - 101500 x^{4} + 805665 x^{3} - 1173240 x^{2} - 7712720 x - 8115904$ |