Defining polynomial
\( x^{15} + 10 x^{14} + 20 x^{13} + 15 x^{12} + 10 x^{11} + 22 x^{10} + 10 x^{9} + 20 x^{8} + 5 x^{7} + 5 x^{6} + 17 x^{5} + 5 x^{4} + 20 x^{3} + 10 x^{2} + 7 \) |
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $15$ |
Ramification exponent $e$: | $5$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{5}(\sqrt{5\cdot 2})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 5 })|$: | $1$ |
This field is not Galois over $\Q_{5}.$ |
Intermediate fields
5.3.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} - x + 2 \) |
Relative Eisenstein polynomial: | $ x^{5} + \left(15 t^{2} + 10 t + 20\right) x^{4} + \left(20 t^{2} + 10\right) x^{3} + \left(5 t^{2} + 15 t + 10\right) x^{2} + \left(10 t^{2} + 20 t + 10\right) x + 15 t^{2} + 15 t \in\Q_{5}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_5^2:C_{12}$ (as 15T19) |
Inertia group: | Intransitive group isomorphic to $C_5^2:C_4$ |
Unramified degree: | $3$ |
Tame degree: | $4$ |
Wild slopes: | [5/4, 5/4] |
Galois mean slope: | $123/100$ |
Galois splitting model: | $x^{15} + 20 x^{13} - 20 x^{12} + 120 x^{11} + 220 x^{10} - 150 x^{9} - 2980 x^{8} + 6595 x^{7} - 13520 x^{6} - 17266 x^{5} + 125300 x^{4} - 260735 x^{3} + 802280 x^{2} - 766320 x + 208832$ |