Properties

Label 5.12.9.3
Base \(\Q_{5}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(9\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 75 x^{4} - 375\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{5}(\sqrt{5\cdot 2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 5 }) }$: $12$
This field is Galois and abelian over $\Q_{5}.$
Visible slopes:None

Intermediate fields

$\Q_{5}(\sqrt{5\cdot 2})$, 5.3.0.1, 5.4.3.4, 5.6.3.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 5 t \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 4z^{2} + z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_4$
Wild inertia group:$C_1$
Unramified degree:$3$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{12} - 4 x^{11} - 62 x^{10} + 224 x^{9} + 1439 x^{8} - 4452 x^{7} - 15958 x^{6} + 38484 x^{5} + 88410 x^{4} - 140364 x^{3} - 227080 x^{2} + 165912 x + 187921$